Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671732

RESUMEN

Magnetic robots possess an innate ability to navigate through hard-to-reach cavities in the human body, making them promising tools for diagnosing and treating diseases minimally invasively. Despite significant advances, the development of robots with desirable locomotion and full biocompatibility under harsh physiological conditions remains challenging, which put forward new requirements for magnetic robots' design and material synthesis. Compared to robots that are synthesized with inorganic materials, natural organisms like cells, bacteria or other microalgae exhibit ideal properties for in vivo applications, such as biocompatibility, deformability, auto-fluorescence, and self-propulsion, as well as easy for functional therapeutics engineering. In the process, these organisms can provide autonomous propulsion in biological fluids or external magnetic fields, while retaining their functionalities with integrating artificial robots, thus aiding targeted therapeutic delivery. This kind of robotics is named bio-hybrid magnetic robotics, and in this mini-review, recent progress including their design, engineering and potential for therapeutics delivery will be discussed. Additionally, the historical context and prominent examples will be introduced, and the complexities, potential pitfalls, and opportunities associated with bio-hybrid magnetic robotics will be discussed.

2.
Nano Lett ; 24(3): 950-957, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198622

RESUMEN

Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Terapia por Ultrasonido , Humanos , Catepsina B , Terapia por Ultrasonido/métodos , Neoplasias/tratamiento farmacológico , Péptidos/uso terapéutico , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Nanopartículas/química
3.
Small Methods ; 7(9): e2300347, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37259275

RESUMEN

Immunogenic cell death (ICD), a dying state of the cells, encompasses the changes in the conformations of cell surface and the release of damage-associated molecular patterns, which could initiate an adaptive immune response by stimulating the dendritic cells to present antigens to T cells. Advancements in biomaterials, nanomedicine, and micro- and nano-technologies have facilitated the development of effective ICD inducers, but the potential toxicity of these vesicles encountered in drug delivery via intravenous administration hampers their further application. As alternatives, the local drug delivery systems have gained emerging attention due to their ability to prolong the retention of high payloads at the lesions, sequester drugs from harsh environments, overcome biological barriers to exert optimal efficacy, and minimize potential side effects to guarantee bio-safety. Herein, a brief overview of the local drug delivery techniques used for ICD inducers is provided, explaining how these techniques broaden, alter, and enhance the therapeutic capability while circumventing systemic toxicity at the same time. The historical context and prominent examples of the local administration of ICD inducers are introduced. The complexities, potential pitfalls, and opportunities for local drug delivery techniques in cancer immunotherapy are also discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Preparaciones Farmacéuticas , Neoplasias/tratamiento farmacológico , Muerte Celular Inmunogénica , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Citotoxinas/uso terapéutico
4.
Adv Mater ; 35(35): e2303542, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37192546

RESUMEN

The combination of ferroptosis inducers and immune checkpoint blockade can enhance antitumor effects. However, the efficacy in tumors with low immunogenicity requires further investigation. In this work, a water-in-oil Pickering emulsion gel is developed to deliver (1S, 3R)-RSL-3 (RSL-3), a ferroptosis inducer dissolved in iodized oil, and programmed death-1 (PD-1) antibody, the most commonly used immune checkpoint inhibitor dissolved in water, with optimal characteristics (RSL-3 + PD-1@gel). Tumor lipase degrades the continuous oil phase, which results in the slow release of RSL-3 and PD-1 antibody and a notable antitumor effect against low-immunogenic hepatocellular carcinoma and pancreatic cancer. Intriguingly, the RSL-3 + PD-1@gel induces ferroptosis of tumor cells, resulting in antitumor immune response via accumulation of helper T lymphocyte cells and cytotoxic T cells. Additionally, the single-cell sequence profiling analysis during tumor treatment reveals the induction of ferroptosis in tumor cells together with strong antitumor immune response in ascites.

5.
Angew Chem Int Ed Engl ; 61(50): e202211674, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184566

RESUMEN

A lack of targeting accuracy and radiosensitivity severely limits clinical radiotherapy. In this study, we developed a radiosensitizer comprised of Ru-based metal-organic nanostructures (ZrRuMn-MONs@mem) to optimize irradiation by maximizing reactive oxygen species (ROS) generation and CO release in X-ray-induced dynamic therapy (XDT). The well-designed nanostructures increase the direct absorption of radiation doses (primary radiation) and promote the deposition of photons and electrons (secondary radiation). The secondary electrons were trapped and transferred in the constrained MONs where they induce a cascade of reactions to increase the therapeutic efficiency. Meanwhile, the full-length antiglypican 3 (GPC3) antibody (hGC33) expressed a cell membrane coating enabling active targeting of tumor sites with optimized biocompatibility. The ZrRuMn-MONs@mem represents a starting point for advancing an all-around radiosensitizer that operates efficiently in clinical XDT.


Asunto(s)
Nanoestructuras , Fármacos Sensibilizantes a Radiaciones , Rutenio , Especies Reactivas de Oxígeno/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Nanoestructuras/química , Electrones , Línea Celular Tumoral
6.
Front Chem ; 10: 870769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668829

RESUMEN

Metal-ion-based self-assembly supramolecular theranostics exhibit excellent performance in biomedical applications owing to their potential superiorities for simultaneous precise diagnosis, targeted drug delivery, and monitoring the response to therapy in real-time. Specially, the rational designed systems could achieve specific in vivo self-assembly through complexation or ionic interaction to improve tissue-specific accumulation, penetration, and cell internalization, thereby reducing toxicities of drugs in diagnostics and therapy. Furthermore, such imaging traceable nanosystems could provide real-timely information of drug accumulation and therapeutic effects in a non-invasive and safe manner. Herein, the article highlights the recent prominent applications based on the metal ions self-assembly in cancer treatment. This strategy may open up new research directions to develop novel drug delivery systems for cancer theranostics.

8.
Nat Nanotechnol ; 17(5): 531-540, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35410368

RESUMEN

The strategy of combining a vaccine with immune checkpoint inhibitors has been widely investigated in cancer management, but the complete response rate for this strategy is still unresolved. We describe a genetically engineered cell membrane nanovesicle that integrates antigen self-presentation and immunosuppression reversal (ASPIRE) for cancer immunotherapy. The ASPIRE nanovaccine is derived from recombinant adenovirus-infected dendritic cells in which specific peptide-major histocompatibility complex class I (pMHC-I), anti-PD1 antibody and B7 co-stimulatory molecules are simultaneously anchored by a programmed process. ASPIRE can markedly improve antigen delivery to lymphoid organs and generate broad-spectrum T-cell responses that eliminate established tumours. This work presents a powerful vaccine formula that can directly activate both native T cells and exhausted T cells, and suggests a general strategy for personalized cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Presentación de Antígeno , Humanos , Terapia de Inmunosupresión , Inmunoterapia , Neoplasias/terapia
9.
Theranostics ; 12(4): 1769-1782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198072

RESUMEN

Background: Though lipiodol formulations are major options in transcatheter arterial chemoembolization (TACE) of advanced unresectable hepatocellular carcinoma (HCC) in the clinic, their application is severely limited by insufficient physical stability between the hydrophobic lipiodol and hydrophilic drugs; thus, most chemotherapeutic drugs are quickly released into systemic circulation resulting in poor therapeutic outcomes and serious side effects. Methods: The typical hydrophilic drug doxorubicin hydrochloride (DOX) was prepared as a pure nanomedicine and then stably and homogeneously dispersed in lipiodol (SHIFT&DOX) via slightly ultrasonic dispersion. The drug release profiles of SHIFT&DOX were defined in a decellularized liver model. In vivo therapeutic studies were performed in rat-bearing N1S1 orthotopic HCC models and rabbit-bearing VX2 orthotopic HCC models. Results: SHIFT&DOX features an ultrahigh homogeneous dispersibility over 21 days, which far surpassed typical Lipiodol-DOX formulations in clinical practice (less than 0.5 h). SHIFT&DOX also has excellent sustained drug release behavior to improve the local drug concentration dependence and increase the time dependence, leading to remarkable embolic and chemotherapeutic efficacy, and eminent safety in all of the orthotopic HCC models. Conclusions: The carrier-free hydrophilic drug nanoparticle technology-based lipiodol formulation provides a promising approach to solve the problem of drug dispersion in TACE with the potential for a translational pipeline.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Quimioembolización Terapéutica/métodos , Doxorrubicina/química , Aceite Etiodizado/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Conejos
10.
Adv Healthc Mater ; 11(8): e2101715, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34997700

RESUMEN

Methods that leverage bone marrow mesenchymal stem cells (BMSCs) and stimulating factor kartogenin (KGN) for chondrocyte differentiation have paved the way for cartilage repair. However, the scarce carriers for efficiently bridging the two components significantly impede their further application. Therefore, one kind of bifunctional ferritin has designed and synthesized: RC-Fn, a genetically engineered ferritin nanocage with RGD peptide and WYRGRL peptide on the surface. The RGD can target the integrin αvß3 of BMSCs and promote proliferation, and the WYRGRL peptide has an inherent affinity for the cartilage matrix component of collagen II protein. RC-Fn nanocages have an ideal size for penetrating the proteoglycan network of cartilage. Thus, intra-articularly injected RC-Fn with KGN loading can convert the articular cavity from a barrier into a reservoir to prevent rapid release and clearance of KGN and exogenous BMSCs, which results in efficient and persistent chondrogenesis in cartilage regeneration.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Anilidas , Cartílago/metabolismo , Diferenciación Celular , Ferritinas/metabolismo , Ácidos Ftálicos
11.
Eur J Nucl Med Mol Imaging ; 49(8): 2605-2617, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34939176

RESUMEN

PURPOSE: To surmount the critical issues of indocyanine green (ICG), and thus achieving a precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. METHODS: In this study, a facile and green pure-nanomedicine formulation technology is developed to construct carrier-free indocyanine green nanoparticles (nanoICG), and which subsequently dispersed into lipiodol via a super-stable homogeneous lipiodol formulation technology (SHIFT nanoICG) for transcatheter arterial embolization combined near-infrared fluorescence-guided precise hepatectomy. RESULTS: SHIFT nanoICG integrates excellent anti-photobleaching capacity, great optical imaging property, and specific tumoral deposition to recognize tumor regions, featuring entire-process enduring fluorescent-guided precise hepatectomy, especially in resection of the indiscoverable satellite lesions (0.6 mm × 0.4 mm) in rabbit bearing VX2 orthotopic hepatocellular carcinoma models. CONCLUSION: Such a simple and effective strategy provides a promising avenue to address the clinical issue of clinical hepatectomy and has excellent potential for a translational pipeline.


Asunto(s)
Carcinoma Hepatocelular , Embolización Terapéutica , Neoplasias Hepáticas , Nanopartículas , Cirugía Asistida por Computador , Animales , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Aceite Etiodizado , Humanos , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Imagen Óptica/métodos , Conejos , Cirugía Asistida por Computador/métodos
12.
Sci Adv ; 7(51): eabl5862, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919434

RESUMEN

Precise and noninvasive theranostic methods to quantify and deplete focal iron are of crucial importance for iron-overload disorders. Here, we developed an indocyanine green (ICG)­based imaging platform to reveal Fe3+ in vitro and in vivo. The high sensitivity and specificity of ICG-Fe interaction facilitated MR images with a marked correlation between T1 signal intensity ratio (T1SIR) changes and Fe3+ concentration in rodent models and humans. On the basis of these findings, a rational design for coordination-driven self-assembly ICG-Lecithin (ICG/Leci) was proposed to determine Fe3+. The enhancement of photoacoustic signal at 890 nm with increasing Fe3+ concentration showed an over 600% higher linear slope than that of T1SIR changes in animal models. ICG/Leci also promoted a 100% increase in iron depletion in the liver compared with deferoxamine. The high MR sensitivity and superior photoacoustic contrast, combined with enhanced iron depletion, demonstrate that ICG/Leci is a promising theranostic agent for simultaneous detection and treatment of iron-overload disorders.

13.
Small Methods ; 5(3): e2000416, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34927821

RESUMEN

Improved drug loading content, bioavailability, and controlled release in targeted tissue have been major bottlenecks in the design of precision nanomedicine. Herein, a tumor-specific and multiple-stimuli responsive nano-riceball is proposed and validated for enhanced sono-chemotherapy. The nano-riceball (NGR@DDP) possesses a well-designed core-shell structure, formed by an inner core assembly that contains ultrasound/H2 O2 responsive bottlebrush-like unimolecular dextran-POEGMA9 -b-PMTEMA22 (DOS) with co-loaded doxorubicin and Purpurin 18. This inner core of NGR@DDP is further buried by a "striffen" of NGR (Asn-Gly-Arg)-modified RBC-membrane derived from CRISPR-engineered mice. As a result, nano-riceball NGR@DDP is featured with high drug stuffing content (30.3 wt%), low critical micelle concentration (5.93 µg mL-1 ), and intelligent exogenous ultrasound/endogenous H2 O2 stimuli-triggered precise drug release at tumor site. Under fluorescence/photoacoustic imaging guidance, combined sonodynamic therapy and chemotherapy exhibit excellent synergistic effect, and dramatically inhibit the growth of orthotopic HepG2 hepatocellular carcinoma with negligible side effects. This nano-riceball strategy provides a facile way to achieve function hybridization for personalized nanomedicine.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Doxorrubicina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Micelas , Nanomedicina
14.
Biomater Sci ; 9(22): 7392-7401, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34751685

RESUMEN

Advances in the development of modern cancer immunotherapy and immune checkpoint inhibitors have dramatically changed the landscape of cancer treatment. However, most cancer patients are refractory to immune checkpoint inhibitors because of low lymphocytic tumor infiltration and PD-L1 expression. Evidence suggests that viral oncolysis and immune checkpoint inhibitors have a synergistic effect that can improve the response to immune checkpoint inhibitors. In this study, we developed bioengineered cell membrane nanovesicles (PD1-BCMNs) with programmed cell death protein 1 (PD-1) to harbor oncolytic adenovirus (OA) and achieve a combination of immune checkpoint blockade and oncolytic virotherapy in one particle for cancer treatment. PD1-BCMNs could specifically deliver OA to tumor tissue; the infectivity and replication ability of the OA was preserved in the presence of neutralizing antibodies in vitro and in vivo. Selective oncolytic effects with oncolytic adenovirus led to an up-regulated expression of PD-L1 in the tumor microenvironment, turning immunologically 'cold' tumors into immunologically 'hot' tumors, presenting more targets for further enhanced target delivery. Notably, PD1-BCMNs@OA could effectively activate tumor-infiltrating T cells and elicit a strong anti-tumor immune response. Thus, PD1-BCMNs@OA may provide a clinical basis for combining oncolytic virotherapy with checkpoint inhibitors, enhancing the oncolytic adenovirus targeted delivery and significantly enhancing T cell immune responses, resulting in a stronger antitumor immunity response.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Viroterapia Oncolítica , Adenoviridae/genética , Línea Celular Tumoral , Humanos , Inmunoterapia
15.
Front Oncol ; 11: 753286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692537

RESUMEN

Precision interventional brachytherapy is a radiotherapy technique that combines radiation therapy medicine with computer network technology, physics, etc. It can solve the limitations of conventional brachytherapy. Radioactive drugs and their carriers change with each passing day, and major research institutions and enterprises worldwide have conducted extensive research on them. In addition, the capabilities of interventional robotic systems are also rapidly developing to meet clinical needs for the precise delivery of radiopharmaceuticals in interventional radiotherapy. This study reviews the main radiopharmaceuticals, drug carriers, dispensing and fixation technologies, and interventional robotic precision delivery systems used in precision brachytherapy of malignant tumors. We then discuss the current needs in the field and future development prospects in high-precision interventional brachytherapy.

16.
Adv Sci (Weinh) ; 8(21): e2100460, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34494387

RESUMEN

Benefiting from the blooming interaction of nanotechnology and biotechnology, biosynthetic cellular membrane vesicles (Bio-MVs) have shown superior characteristics for therapeutic transportation because of their hydrophilic cavity and hydrophobic bilayer structure, as well as their inherent biocompatibility and negligible immunogenicity. These excellent cell-like features with specific functional protein expression on the surface can invoke their remarkable ability for Bio-MVs based recombinant protein therapy to facilitate the advanced synergy in poly-therapy. To date, various tactics have been developed for Bio-MVs surface modification with functional proteins through hydrophobic insertion or multivalent electrostatic interactions. While the Bio-MVs grow through genetically engineering strategies can maintain binding specificity, sort orders, and lead to strict information about artificial proteins in a facile and sustainable way. In this progress report, the most current technology of Bio-MVs is discussed, with an emphasis on their multi-functionalities as "tailorable shells" for delivering bio-functional moieties and therapeutic entities. The most notable success and challenges via genetically engineered tactics to achieve the new generation of Bio-MVs are highlighted. Besides, future perspectives of Bio-MVs in novel bio-nanotherapy are provided.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Ingeniería Genética , Animales , Anticuerpos Monoclonales/uso terapéutico , Exosomas/metabolismo , Vesículas Extracelulares/química , Humanos , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia , Viroterapia Oncolítica , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
17.
Front Mol Biosci ; 8: 615084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095215

RESUMEN

BACKGROUND: Osteosarcoma is a frequent bone malignancy in children and young adults. Despite the availability of some prognostic biomarkers, most of them fail to accurately predict prognosis in osteosarcoma patients. In this study, we used bioinformatics tools and machine learning algorithms to establish an autophagy-related long non-coding RNA (lncRNA) signature to predict the prognosis of osteosarcoma patients. METHODS: We obtained expression and clinical data from osteosarcoma patients in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. We acquired an autophagy gene list from the Human Autophagy Database (HADb) and identified autophagy-related lncRNAs by co-expression analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the autophagy-related lncRNAs were conducted. Univariate and multivariate Cox regression analyses were performed to assess the prognostic value of the autophagy-related lncRNA signature and validate the relationship between the signature and osteosarcoma patient survival in an independent cohort. We also investigated the relationship between the signature and immune cell infiltration. RESULTS: We initially identified 69 autophagy-related lncRNAs, 13 of which were significant predictors of overall survival in osteosarcoma patients. Kaplan-Meier analyses revealed that the 13 autophagy-related lncRNAs could stratify patients based on their outcomes. Receiver operating characteristic curve analyses confirmed the superior prognostic value of the lncRNA signature compared to clinically used prognostic biomarkers. Importantly, the autophagy-related lncRNA signature predicted patient prognosis independently of clinicopathological characteristics. Furthermore, we found that the expression levels of the autophagy-related lncRNA signature were significantly associated with the infiltration levels of different immune cell subsets, including T cells, NK cells, and dendritic cells. CONCLUSION: The autophagy-related lncRNA signature established here is an independent and robust predictor of osteosarcoma patient survival. Our findings also suggest that the expression of these 13 autophagy-related lncRNAs may promote osteosarcoma progression by regulating immune cell infiltration in the tumor microenvironment.

18.
Front Cell Dev Biol ; 9: 651593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124041

RESUMEN

The aim of this study was to construct a new immune-associated long non-coding RNA (lncRNA) signature to predict the prognosis of Ewing sarcoma (ES) and explore its molecular mechanisms. We downloaded transcriptome and clinical prognosis data from the Gene Expression Omnibus (GSE17679, which included 88 ES samples and 18 matched normal skeletal muscle samples), and used it as a training set to identify immune-related lncRNAs with different expression levels in ES. Univariable Cox regression was used to screen immune-related lncRNAs related to ES prognosis, and an immune-related lncRNA signature was constructed based on machine learning iterative lasso regression. An external verification set was used to confirm the predictive ability of the signature. Clinical feature subgroup analysis was used to explore whether the signature was an independent prognostic factor. In addition, CIBERSORT was used to explore immune cell infiltration in the high- and low-risk groups, and to analyze the correlations between the lncRNA signature and immune cell levels. Gene set enrichment and variation analyses were used to explore the possible regulatory mechanisms of the immune-related lncRNAs in ES. We also analyzed the expression of 17 common immunotherapy targets in the high- and low-risk groups to identify any that may be regulated by immune-related lncRNAs. We screened 35 immune-related lncRNAs by univariate Cox regression. Based on this, an immune-related 11-lncRNA signature was generated by machine learning iterative lasso regression. Analysis of the external validation set confirmed its high predictive ability. DPP10 antisense RNA 3 was negatively correlated with resting dendritic cell, neutrophil, and γδ T cell infiltration, and long intergenic non-protein coding RNA 1398 was positively correlated with resting dendritic cells and M2 macrophages. These lncRNAs may affect ES prognosis by regulating GSE17721_CTRL_VS_PAM3CSK4_12H_BMDC_UP, GSE2770_IL4_ACT_VS_ACT_CD4_TCELL_48H_UP, GSE29615_CTRL_VS_DAY3_ LAIV_IFLU_VACCINE_PBMC_UP, complement signaling, interleukin 2-signal transducer and activator of transcription 5 signaling, and protein secretion. The immune-related 11-lncRNA signature may also have regulatory effects on the immunotherapy targets CD40 molecule, CD70 molecule, and CD276 molecule. In conclusion, we constructed a new immune-related 11-lncRNA signature that can stratify the prognoses of patients with ES.

19.
World Neurosurg ; 150: e127-e134, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33684582

RESUMEN

BACKGROUND: Degenerative lumber spondylolisthesis (DLS) is a common orthopedic condition, described as a condition that compared with the lower vertebra, the superior vertebra slides forward or backward in the sagittal plane without accompanying isthmic spondylolisthesis. Information pertaining to different types of double-level DLS is scarce. This study aims to analyze parameters of patients with different types of double-level DLS to provide a reference for guiding surgical treatment and restoring sagittal balance of patients with DLS. METHODS: From January 2014 to January 2020, records of patients with double-level DLS were retrospectively reviewed. Patients with double-level DLS were divided into 3 types: anterior, posterior, and combined; the anterior and combined types were studied. The sagittal spinopelvic parameters included C7 tilt, maximal thoracic kyphosis, maximal lumbar lordosis (LLmax), pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). After descriptive analysis, demographic and radiographic data were compared. RESULTS: Forty and 18 patients were included in the anterior and combined type groups, respectively. Both groups had different levels of chronic low back pain, but the incidence of radiating leg pain and neurogenic claudication was significantly higher in the anterior type. Oswestry Disability Index and visual analog scale low back scores were also higher in the anterior type. In the anterior type, C7 tilt (7.14 ± 2.15 vs. 5.41 ± 2.28, P = 0.007), LLmax (50.02 ± 14.76 vs. 36.96 ± 14.56, P = 0.003), PI (68.28 ± 9.16 vs. 55.53 ± 14.19, P < 0.001), PT (28.68 ± 7.31 vs. 19.38 ± 4.70, P < 0.001), and PT/PI (42.45 ± 11.22 vs. 36.04 ± 9.87, P = 0.041) were significantly higher. In the anterior type, PI correlated positively with LLmax (r = 0.59) and SS (r = 0.71). LLmax and SS (r = 0.65) had a positive correlation. PT/PI and SS (r = -0.77) had a negative correlation. In the combined type, PI correlated positively with LLmax (r = 0.61) and SS (r = 0.88), and PT/PI correlated negatively with SS (r = -0.81). CONCLUSIONS: In patients with double-level DLS, the sagittal spinopelvic parameters differed between the anterior and combined types. Overall, spinal surgeons should focus on correcting sagittal deformities, relieving postoperative clinical symptoms, and improving quality of life during fusion surgery.


Asunto(s)
Degeneración del Disco Intervertebral/patología , Vértebras Lumbares/patología , Espondilolistesis/patología , Anciano , Evaluación de la Discapacidad , Femenino , Humanos , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/cirugía , Cifosis/patología , Lordosis/patología , Dolor de la Región Lumbar/etiología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Pelvis/patología , Estudios Retrospectivos , Fusión Vertebral , Espondilolistesis/diagnóstico por imagen , Espondilolistesis/cirugía
20.
J Cancer Res Clin Oncol ; 147(1): 153-165, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32968877

RESUMEN

PURPOSE: Ewing sarcoma (ES) is one of the most common malignant bone tumors in children and adolescents. The immune microenvironment plays an important role in the development of ES. Here, we developed an optimal signature for determining ES patient prognosis based on immune-related genes (IRGs). METHODS: We analyzed the ES gene expression profile dataset, GSE17679, from the GEO database and extracted differential expressed IRGs (DEIRGs). Then, we conducted functional correlation and protein-protein interaction (PPI) analyses of the DEIRGs and used the machine learning algorithm-iterative Lasso Cox regression analysis to build an optimal DEIRG signature. In addition, we applied ES samples from the ICGC database to test the optimal gene signature. We performed univariate and multivariate Cox regressions on clinicopathological characteristics and optimal gene signature to evaluate whether signature is an important prognostic factor. Finally, we calculated the infiltration of 24 immune cells in ES using the ssGSEA algorithm, and analyzed the correlation between the DEIRGs in the optimal gene signature and immune cells. RESULTS: A total of 249 DEIRGs were screened and an 11-gene signature with the strongest correlation with patient prognoses was analyzed using a machine learning algorithm. The 11-gene signature also had a high prognostic value in the ES external verification set. Univariate and multivariate Cox regression analyses showed that 11-gene signature is an independent prognostic factor. We found that macrophages and cytotoxic, CD8 T, NK, mast, B, NK CD56bright, TEM, TCM, and Th2 cells were significantly related to patient prognoses; the infiltration of cytotoxic and CD8 T cells in ES was significantly different. By correlating prognostic biomarkers with immune cell infiltration, we found that FABP4 and macrophages, and NDRG1 and Th2 cells had the strongest correlation. CONCLUSION: Overall, the IRG-related 11-gene signature can be used as a reliable ES prognostic biomarker and can provide guidance for personalized ES therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/patología , Linfocitos Infiltrantes de Tumor/inmunología , Aprendizaje Automático , Sarcoma de Ewing/patología , Microambiente Tumoral/inmunología , Adolescente , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Pronóstico , Sarcoma de Ewing/genética , Sarcoma de Ewing/inmunología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA